
RAPID COMMUNICATIONS

PHYSICAL REVIEW E APRIL 2000VOLUME 61, NUMBER 4
Calculating response functions in time domain with nonorthonormal basis sets
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We extend the recently proposed order-N algorithms for calculating linear- and nonlinear-response functions
in time domain to the systems described by nonorthonormal basis sets.
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I. INTRODUCTION

As the first-principles calculations become more and m
important in various fields such as physics, chemistry, m
rials science, and recently geology and biology, the dem
for calculation of larger and larger systems is growing ra
idly. One of the answers to this demand is the so-ca
order-N methods, which compute the electronic band str
ture, the total energy, and other quantities with compu
tional time and storage proportional toN, the number of the
atoms in the system. For very large systems, these met
are much faster than the conventional diagonalization m
ods, which require computational efforts proportional toN3.

The order-N methods may be classified into two step
The first is minimizing the total energy to obtain the grou
state of the self-consistent one-particle Hamiltonian. The s
ond is extracting dynamic properties such as linear
nonlinear-response functions from the Hamiltonian. Wh
the first step has been extensively studied@1–8# and also
comprehensive reviews are available@9,10#, the second step
has been studied by only a few papers@11–15#, including the
particle source method@16,17# and theprojection method
@18–21#, which use the numerical solution of the tim
dependent Schro¨dinger equation@22#, andprojected random
vectors@23#.

The purpose of this Rapid Communication is to exte
the formalism of the projection method to nonorthonorm
basis sets@24–28#, on which many order-N total energy
minimization methods are built, so that the fullab initio
calculation from the total energy minimization to the r
sponse function is possible.

II. NONORTHONORMAL BASIS SET

In this section, let us review the description of a syst
with a Hilbert space spanned by finite numbers of linea
independent nonorthonormal bases$uwa&%. We distinguish a
vector in the Hilbert space from its components by using
braket notation for a vector in the Hilbert space and the t
sor notation@24# and the matrix notation@26# for its compo-
nents.

The overlap matrix is defined as a Hermitian matrix w
subscripts,

Sab[^wauwb&5Sba* . ~1!
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Then the inverse matrix is defined as a matrix with sup
scripts that satisfies

(
b

~S21!abSbg5dg
a , ~2!

wheredg
a is Kroneker’s delta. Then thedual basis set̂wau is

defined by

uwa&5(
b

uwb&~S21!ba, ~3!

which is used only in formal description, but not in re
numerical calculations. These two basis sets arebiorthogo-
nal andbicomplete,

^wauwb&5(
g

~S21!agSgb5db
a , ~4!

(
a

uwa&^wau5I , ~5!

whereI is the identity operator.
An arbitrary stateuf& can be expressed in original or du

basis set,

uf&5(
a

fauwa&5(
a,b

fauwb&Sba5(
b

fbuwb&, ~6!

where fa and fa are the components in each basis s
which are related to each other by

fb5(
b

Sbafa. ~7!

The components ofuf& are represented by a column vect
f5@f1,f2, . . . ,fN# t where t indicates the transpose of
vector or matrix, and its dual̂f̃u is represented by a row
vectorf̃5@f1* ,f2* ,...,fN* #.

The lower-indexed components of an operator, the Ham
tonianĤ, for example, are defined in the original basis set

Hab5^wauĤuwb&. ~8!

Then the mixed-indexed components are defined by
R3314 © 2000 The American Physical Society
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H b
a 5^wauĤuwb&5(

g
~S21!agHgb . ~9!

The manipulation of state vectors and operators is most c
veniently expressed in the mixed representation. For
ample,uc&5Ĥuf& becomesca5(bHa

bfb. Therefore, we
can introduce the matrix notation,c5H̄f where the bar
over the matrix symbol indicates the raise of the first ind
H̄5$H b

a %. Then Eq.~9! is rewritten as

H̄5S21H, ~10!

whereH is the matrix$Hab%. Now H̄ is not Hermitian ma-
trix anymore, since

H̄†5~S21H!†5H†~S21!† ~11!

5HS215SH̄S21ÞH̄. ~12!

Note that the full calculation ofS21, which costsO(N3)
CPU time, is not necessary to obtain a good approximan
H̄ from a sparseH @25,26#. One of the advantages ofH̄ over
H is that power ofĤ is easily calculated without explicitly
multiplying S21 @26#,

Ĥnuf&5(
b

Ĥnuwb&fb5(
a

(
b

uwa&~H̄n! b
a fb ~13!

5(
a

uwa&~H̄nf!a. ~14!

The matrix form of the eigenvalue problem

(
b

Ha
bfb5Efa ~15!

becomes

H̄f~Eb!5Ebf~Eb! ~16!

and the dual of Eq.~16! becomes

f̃~Eb!H̄5Ebf̃~Eb!. ~17!

The eigenvectors, Eqs.~16! and ~17!, define the eigenstates

uEb&5(
a

uwa&fa~Eb!, ~18!

^Ẽbu5(
a

f̃a~Eb!^wau, ~19!

which satisfy the biorthonormality and the bicompletenes

^ẼauEb&5dab , ~20!

(
a

uEa&^Ẽau5I . ~21!
n-
x-

x

of

III. RANDOM VECTORS

Let us definerandom states@29,30# by

uF&[(
b

uwb&Fb, ~22!

^F̃u[(
a

F̃a^wau, ~23!

where$uwb&% and $^wau% are the basis set used in the com
putation and its dual basis set, respectively. Their com
nents

Fa5F̃a* 5ja ~24!

are the pseudorandom numbers that satisfy the statistica
lation

^^ja* jb&&5dab , ~25!

where ^^•&& indicates the statistical average. Note that t
transformation of the random vector to its dual does not c
tain the overlap matrixS in Eq. ~24!, unlike the general rule
for usual vectors in Eq.~7!.

These random states may be also expressed by the e
states ofH̄ by substituting Eq.~21! into Eqs.~22! and ~23!,

uF&5(
bg

uEb&^Ẽbuwg&jg5(
b

uEb&zb , ~26!

^F̃u5(
ad

jd* ^wduEa&^Ẽau5(
a

za* ^Ẽau, ~27!

where

zb5(
g

^Ẽbuwg&jg , ~28!

za* 5(
d

jd* ^wduEa&. ~29!

Although we do not know the actual value ofza* , zb , ^Ẽbu,
or uEa&, we can derive the statistical relation of the rando
variableszb as follows:

^^za* zb&&5(
g

(
d

^wduEa&^Ẽbuwg&^^jd* jg&&

5(
g

^Ẽbuwg&^wguEa&5^ẼbuEa&5dab .

~30!

This relation is very important, as we will see later.
One of the useful features of random states is that

expectation value of an operatorX̂ in terms of the random
states gives trace of the operator,

ŠŠ^F̃uX̂uF&‹‹5(
a,b

^^ja* jb&&^wauX̂uwb&5(
a

Xa
a ,
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which is identical to the trace calculated with an orthonorm
basis setun& because

^X̂&5tr@X̂#5 (
n,a,b

^nuwa&Xb
a^wbun& ~31!

5(
a,b

^wbuwa&Xb
a5(

a
Xa

a. ~32!

IV. PROJECTED RANDOM VECTORS

Then the projected random vectors are defined by

FEf
5u~Ef2H̄!F5(

m
cmcm , ~33!

F̃Ef
5F̃u~Ef2H̄!5(

m
cmc̃m , ~34!

wherecm are the coefficients for the Chebyshev polynom
expansion of the step function@12,31#

u~x!5H 0 ~x,0!

1 ~x.0!.
~35!

The random vectors multiplied by the Chebyshev polynom
Tm(H̄)

cm5Tm~H̄!F, ~36!

c̃m5F̃Tm~H̄!, ~37!

are calculated by using the recursion formulas

cm1152H̄cm2cm21 , ~38!

c̃m1152c̃mH̄2c̃m21 . ~39!

These coefficient vectors define the projected rand
states

uFEf
&[(

a
uwa&~FEf

!a5 (
Eb<Ef

uEb&zb , ~40!

^F̃Ef
u[(

a
~F̃Ef

!a^wau5 (
Eb<Ef

zb* ^Ẽbu. ~41!

One of the useful features of projected random states is
the expectation value of an operatorX̂ with them gives the
trace of the operator over the Fermi occupied states,

ŠŠ^F̃Ef
uX̂uFEf

&‹‹5 (
Ea ,Eb <Ef

^^za* zb&&^ẼauX̂uEb&

~42!

5 (
Ea<Ef

Xa
a , ~43!

where the statistical relation Eq.~30! is used.
l

l

l

m

at

V. TIME EVOLUTION

The time-dependent Schro¨dinger equations correspondin
to the eigenvalue equations~16! and ~17! become

1 i
d

dt
f~ t !5H̄f~ t !, ~44!

2 i
d

dt
f̃~ t !5f̃~ t !H̄. ~45!

The formal solutions of the time-dependent equations
come

f~ t !5e2 i H̄ tf~ t50!, ~46!

f̃~ t !5f̃~ t50!e1 i H̄ t. ~47!

For numerically calculating the time evolution of the coef
cients, we use the leap frog method@22#,

f~ t1Dt !522iDtH̄f~ t !1f~ t2Dt !, ~48!

f̃~ t1Dt !512iDtf̃~ t !H̄1f̃~ t2Dt !, ~49!

whereDt is the time step.

VI. LINEAR RESPONSE FUNCTION

When an impulse of perturbationÂd(t) is applied to the
system described by the HamiltonianĤ, the time evolution
of the wave function is described by the time-depend
Schrödinger equation in the matrix form

i
d

dt
F~ t !5$H̄1Ād~ t !%F~ t !, ~50!

2 i
d

dt
F̃~ t !5F̃~ t !$H̄1Ād~ t !%, ~51!

whereĀ5S21A is the matrix ofÂ in the mixed representa
tion. Note that the impulseĀd(t) contains all frequency
componentsĀe2 ivt. Assuming that the system was in a pr
jected random stateF(0)5FEf

before the perturbation, the

wave function after the perturbation (t.0) becomes

F~ t !5F(0)~ t !1dF~ t !, ~52!

F̃~ t !5F̃(0)~ t !1dF̃~ t !, ~53!

where

F(0)~ t !5e2 i H̄ tFEf
, ~54!

dF~ t !5~2 i !e2 i H̄ t u ~H̄2Ef !ĀFEf
, ~55!

and

F̃(0)~ t !5F̃Ef
e1 i H̄ t, ~56!
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dF̃~ t !5~1 i !F̃Ef
Āu~H̄2Ef !e

1 i H̄ t ~57!

are the time evolution of unperturbed and perturbed vect
The linear response of an observableB̂ from all electrons

is calculated as

dB~ t !52 Re$d F̃Ef
~ t !B̄FEf

(0)~ t !%, ~58!

whereB̄5S21B is the matrix ofB̂ in the mixed representa
tion. In Eqs.~55! and ~57!, projection operatorsu(H̄2Ef)
have been introduced to ensure that the excited states
higher than the Fermi energy. Then the Fourier transform
tion of dB(t) gives the linear response of the noninteract
many-electron system to the perturbationĀe2 ivt,

xBA~v1 ih!5K K E
0

T

dt e1 i (v1 ih)tdB~ t !L L , ~59!

where the imaginary part of frequencyh is introduced to
-

.

ev
E

s.

are
a-

limit the integration time to a finite valueT52 ln d/h, with d
being the relative numerical accuracy of Eq.~59!. Here
^^•&& indicates the statistical average.

VII. SUMMARY

We presented a generalized version of the project
method for linear and nonlinear response functions de
oped by Iitaka and others@18–21#. The method can now be
used with nonorthonormal basis sets, such as local basis
for order-N total energy calculations. As a result, it becam
possible to calculate the response functions of very la
systems by applying the projection method to the optimiz
Hamiltonian with a local nonorthonormal basis set.
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